11 research outputs found

    Dose volume histogram‐based optimization of image reconstruction parameters for quantitative 90Y‐PET imaging

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147185/1/mp13269.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147185/2/mp13269_am.pd

    The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study

    Full text link
    Abstract Background A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90Y microspheres. Currently, 99mTc macroaggregated albumin (99mTc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99mTc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99mTc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. Results A liver/lung torso phantom filled with 99mTc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99mTc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3–29.4) for planar imaging and 3.2 Gy (range 0.4–13.4) for SPECT/CT. For the patients with post-therapy imaging, the mean LSF from 90Y PET/CT was 1.0%, (range 0.3–2.8). This value was not significantly different from the mean LSF estimate from 99mTc-MAA SPECT/CT (mean 1.0%, range 0.4–1.6; p = 0.968), but was significantly lower than the mean LSF estimate based on planar imaging (mean 4.1%, range 1.2–15.0; p = 0.0002). Conclusions The improved accuracy demonstrated by the phantom study, agreement with 90Y PET/CT in patient studies, and the practicality of using auto-contouring for liver/lung definition suggests that 99mTc-MAA SPECT/CT with scatter and attenuation corrections should be used for lung shunt estimation prior to radioembolization.https://deepblue.lib.umich.edu/bitstream/2027.42/144504/1/13550_2018_Article_402.pd

    The impact of a high‐definition multileaf collimator for spine SBRT

    Full text link
    PurposeAdvanced radiotherapy delivery systems designed for high‐dose, high‐precision treatments often come equipped with high‐definition multi‐leaf collimators (HD‐MLC) aimed at more finely shaping radiation dose to the target. In this work, we study the effect of a high definition MLC on spine stereotactic body radiation therapy (SBRT) treatment plan quality and plan deliverability.Methods and MaterialsSeventeen spine SBRT cases were planned with VMAT using a standard definition MLC (M120), HD‐MLC, and HD‐MLC with an added objective to reduce monitor units (MU). M120 plans were converted into plans deliverable on an HD‐MLC using in‐house software. Plan quality and plan deliverability as measured by portal dosimetry were compared among the three types of plans.ResultsOnly minor differences were noted in plan quality between the M120 and HD‐MLC plans. Plans generated with the HD‐MLC tended to have better spinal cord sparing (3% reduction in maximum cord dose). HD‐MLC plans on average had 12% more MU and 55% greater modulation complexity as defined by an in‐house metric. HD‐MLC plans also had significantly degraded deliverability. Of the VMAT arcs measured, 94% had lower gamma passing metrics when using the HD‐MLC.ConclusionModest improvements in plan quality were noted when switching from M120 to HD‐MLC at the expense of significantly less accurate deliverability in some cases.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139989/1/acm212197.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139989/2/acm212197_am.pd

    Impact of 90Y PET gradient-based tumor segmentation on voxel-level dosimetry in liver radioembolization

    Full text link
    Abstract Background The purpose was to validate 90Y PET gradient-based tumor segmentation in phantoms and to evaluate the impact of the segmentation method on reported tumor absorbed dose (AD) and biological effective dose (BED) in 90Y microsphere radioembolization (RE) patients. A semi-automated gradient-based method was applied to phantoms and patient tumors on the 90Y PET with the initial bounding volume for gradient detection determined from a registered diagnostic CT or MR; this PET-based segmentation (PS) was compared with radiologist-defined morphologic segmentation (MS) on CT or MRI. AD and BED volume histogram metrics (D90, D70, mean) were calculated using both segmentations and concordance/correlations were investigated. Spatial concordance was assessed using Dice similarity coefficient (DSC) and mean distance to agreement (MDA). PS was repeated to assess intra-observer variability. Results In phantoms, PS demonstrated high accuracy in lesion volumes (within 15%), AD metrics (within 11%), high spatial concordance relative to morphologic segmentation (DSC > 0.86 and MDA  0.99, MDA < 0.2 mm, AD/BED metrics within 2%). For patients (58 lesions), spatial concordance between PS and MS was degraded compared to in-phantom (average DSC = 0.54, average MDA = 4.8 mm); the average mean tumor AD was 226 ± 153 and 197 ± 138 Gy, respectively for PS and MS. For patient AD metrics, the best Pearson correlation (r) and concordance correlation coefficient (ccc) between segmentation methods was found for mean AD (r = 0.94, ccc = 0.92), but worsened as the metric approached the minimum dose (for D90, r = 0.77, ccc = 0.69); BED metrics exhibited a similar trend. Patient PS showed low intra-observer variability (average DSC = 0.81, average MDA = 2.2 mm, average AD/BED metrics within 3.0%). Conclusions 90Y PET gradient-based segmentation led to accurate/robust results in phantoms, and showed high concordance with MS for reporting mean tumor AD/BED in patients. However, tumor coverage metrics such as D90 exhibited worse concordance between segmentation methods, highlighting the need to standardize segmentation methods when reporting AD/BED metrics from post-therapy 90Y PET. Estimated differences in reported AD/BED metrics due to segmentation method will be useful for interpreting RE dosimetry results in the literature including tumor response data.https://deepblue.lib.umich.edu/bitstream/2027.42/146544/1/40658_2018_Article_230.pd

    Y-90 SIRT: evaluation of TCP variation across dosimetric models

    No full text
    Abstract Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods
    corecore